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Linear instability analysis is applied to the slowly diverging mean profile of a 
turbulent axisymmetric jet and used to  predict the transverse structure and axial 
evolution of large-scale wavelike modes with azimuthal wavenumber m = 1. Com- 
parisons are made with measurements of filtered velocity fluctuations, and of 
pressure fluctuations, taken in a jet with coherent forcing a t  the exit plane, at 
Strouhal numbers St = f D / U ,  around 0.5, f = w / 2 n  being the frequency, D the nozzle 
diameter and U, the mean centreline exit velocity. The transverse structure a t  each 
axial station is well predicted by linear theory, as is the phase speed and its variation 
with axial distance. The downstream evolution of amplitude is much less well 
predicted, presumably because of cumulative nonlinear effects in the experiments, 
though the inclusion of mean-flow divergence itself constitutes a significant improve- 
ment over the theory for parallel flow, and in some cases permits calculation of the 
wave evolution well into the decay phase without any reference to viscous effects 
on the disturbance. 

1. Introduction 
This paper aims to make a contribution to the modelling of orderly large-scale 

structures in high-Reynolds-number axisymmetric turbulent jets. Attention has, for 
the most part, been confined to axisymmetric modes, both in experimental work 
(Crow & Champagne 1971; Chan 1974; Moore 1977; and many others) and in 
theoretical (Michalke 1971 ; Grant 1974; Crighton & Uaster 1976; Acton 1980). That 
emphasis is entirely natural for reasons of both experimental and theoretical 
convenience. First, if one is using controlled forcing to  raise the large-scale structures 
above the random background, then low-frequency acoustic forcing by plane waves 
generated by a loudspeaker in a jet-rig plenum chamber provides a simple arrangement 
for exciting axisymmetric jet modes, whereas modes with azimuthal variation can 
only be generated individually by a much more complicated loudspeaker system. 
Secondly, if one attempts to model the structures with concentrations of vorticity 
(thereby allowing a nonlinear treatment of their dynamics), one can much more 
readily handle a train of axisymmetric ring vortices (Grant 1974; Morfey 1979 ; Acton 
1980; among many) than the helical vortex filaments which would be needed to 
describe modes with azimuthal variation. It is equally clear, however, that  structures 
with low-order azimuthal variation must also be taken into account. Such structures 
are often see in flow-visualization studies when there is no systematic plane-wave 
forcing and can presumably be as easily excited as axisymmetric structures in a real 
aeroengine exhaust flow. Moreover, all instability analyses indicate that the growth 
rates of first-order azimuthal modes are a t  least comparable with those of axi- 
symmetric modes (and indeed, in one particular case, that of the bell-shaped profile 
adopted by a jet far beyond the end of the potential core, first-order azimuthal modes 
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may continue to grow while axisymmetric modes can only decay (Batchelor & Gill 
1962)). 

Experiments on the controlled forcing, with azimuthal variation, of high- 
Reynolds-number jets have been reported by Chan (1977) and by Bechert & 
Pfizenmaier (1977). The intent of the latter authors was to investigate whether the 
broadband amplification phenomenon would occur with azimuthally varying modes 
to an extent similar to  that found in the original plane-wave experiments of Bechert 
& Pfizenmaier (1975) and Moore (1977) ; they found, indeed, very similar results, 
except that  the forcing tone, which was the dominant feature of the far-field sound 
in the plane-wave case, was dramatically reduced (by some 30 dB) in the m = 1 and 
m = 2 azimuthal mode cases, the tone in those cases being acoustically ‘cut off’ in 
the jet pipe but still strong enough to excite large-scale orderly structures on the jet 
shear layers. Bechert & Pfizenmaier (1977) did not, however, report any results for 
the jet structure, and confined their presentation to  the acoustic far field. 

Experiments with spinning modes m = 1, 2 were reported by Chan in 1977. While 
we have attempted to  compare our own theoretical results with Chan’s data, we do 
not feel that the attempt constitutes a useful test of our calculations. For first, Chan’s 
(limited) data involve pressure fluctuations only, which inevitably vary slowly in the 
axial and radial directions, and we attach far greater importance to the results for 
velocity fluctuations, which show much more structure. The thesis of Strange (1981), 
upon which this paper and Part  2 are based, is currently the only source of data 
involving velocity fluctuations. Secondly, in his presentation of data on wavelengths 
and phase velocities deduced from pressure measurements, Chan (1977, figure 3) does 
not indicate the axial locations at which the data were taken (and there is considerable 
variation with x; see figure 10 below). Thirdly, although Chan does give data for the 
evolution, with axial distance, of the pressure fluctuations in the shear layer and on 
the centreline, we do not consider prediction of those variations to be a significant 
test in itself, for in Crighton & Gaster (1976) i t  was shown that linear theory might 
reasonably predict the pressure amplification downstream yet fail to predict, to any 
comparable accuracy, the much larger amplification that occurs in the velocity 
fluctuations. On the theoretical side, no helical vortex-filament modelling (or indeed 
any kind of vortex-filament modelling involving an axial component of vorticity) has 
yet been attempted for non-axisymmetric modes to complement the ring-vortex 
description of axisymmetric modes. However, many authors have given results for 
non-axisymmetric modes in a modelling of these modes as spinning instability waves 
amplifying and decaying on the mean profile, with account taken in varying degrees 
both of nonlinearity and mean flow divergence. Weakly nonlinear disturbances to 
a slowly diverging shear layer continue to present serious conceptual problems 
(Huerre 1980 ; Huerre & Scott 1980) and the most successful treatments of nonlinearity 
have used a pragmatic mixture of energy equations, shape assumptions and closure 
hypotheses (for the most comprehensive discussion see Mankbadi & Liu 1981). Here 
we deal only with the linear instability problem for spinning modes, but deal 
rationally with the effect of mean-flow divergence in the way carried out for 
axisymmetric modes by Crighton & Gaster (1976). Plaschko (1979) has carried out 
a calculation very similar to the present one, though he did not (as we do, in $2) justify 
the approach, nor was he able to calculate the transverse mode shapes with complete 
success. Further, the only data available for comparison with his results were then 
those of Chan (1977), with deficiencies mentioned earlier. Thus Plaschko was able only 
to make qualitative comparison of his theory with experiment, the comparison (which 
we in no way dispute) relating to the selection of a different ‘preferred’ Strouhal 
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number for different mode numbers m, and different variations with axial distance 
of the phase speed of the pressure signal for different values of m. 

There is thus a case for the reporting of further experimental and theoretical work 
on the problem of non-axisymmetric structures and their modelling in terms of 
spinning instability wave modes. This paper, and its sequel, Part 2, give a selection 
of data and calculations from the large collection in Strange (1981).  In  Part 1 we 
present results of a now familiar instability calculation for spinning modes of wave- 
number m = 1 on a slowly diverging mean turbulent profile (with a good fit of an 
analytical form to our own measurements) and compare them with hot-wire 
measurements of filtered velocity fluctuations in the flow, and with pressure- 
fluctuation measurements in the near field. Theory and experiment are confined to  
axial locations upstream of the end of the potential core, because the aim of this 
study - and of most previous studies of forced-jet behaviour - is an improved 
understanding of noise-production mechanisms. It is generally believed that much 
of the noise production occurs in the early part of the jet (except in the case of 
high-speed flow), and indeed Moore (1978) has shown that the noise sources for all 
frequencies in a forced jet are concentrated in a spatial region between two and four 
diameters downstream of the nozzle exit. 

I n  our experiments a controlled forcing, with the required azimuthal variation and 
with Strouhal number around 0.5, was imposed a t  the nozzle exit plane. I n  the sense 
that the forcing was strong enough to increase the broadband turbulence levels and 
far-field sound by several decibels (for plane-wave excitation this would require a 
velocity fluctuation, uniform over the exit plane, in excess of about 0 . 1  yo of the mean 
velocity, according to  Moore 1977) the response of the instability wave might be 
classified as signiJicantly nonlinear, and, in the axisymmetric case, high-speed films 
clearly show shear-layer break-up into vorticity concentrations which then pair and 
merge as they travel downstream. On the other hand, spectra of the velocity and 
pressure fluctuations show that the behaviour of the forcing tone itself is only weakly 
nonlinear in the sense that, a t  any location, integral harmonics of the forcing can be 
seen, but these are weak compared with the fundamental, and decrease rapidly in 
level from one harmonic to  the next. One might therefore expect a reasonable local 
prediction of the large-scale instability mode structure, but suspect that  nonlinear 
effects would accumulate with axial range and invalidate the prediction by linear 
theory of the cumulative growth experienced by the wave. This is indeed a consistent 
interpretation of the results of $3. 

Part 2 will confine itself to the experimental programme, dealing with the dramatic 
and varied distortion of the mean jet flow that can be achieved by relatively low-level 
forcing in modes with m = 0, 1 and 2. It was shown by Crow & Champagne (1971) 
that plane-wave forcing could significantly distort the mean profile over the first six 
diameters or so, the effect on the far-downstream jet being equivalent to an  upstream 
shift of the virtual origin by some two diameters. We shall show in Part 2 that  similar 
levels of forcing in the m = 1 ,  2 modes can lead to a more severe distortion of the 
mean flow over the first twelve diameters. Part 2 will also deal with the broadband 
response of the jet to forcing, both in the flow field itself and in the acoustic far field. 

2. Linear instability analysis 
Since the style of analysis to be used here has already been used for axisymmetric 

modes by Crighton & Gaster (1976) and for precisely the present spinning-mode 
problem by Plaschko (1979), only the briefest summary will be given. First, however, 
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the basis for the calculation should be noted, because it is not obvious that one can 
conduct linear inviscid instability analysis on a diverging mean turbulent jet profile 
which does not itself satisfy the Euler equations. 

Suppose that L is a shear-layer thickness, D the jet diameter, and E = L / D  << 1. 
Suppose, further, that the shear-layer fine-scale turbulence characteristics scale on 
L,  U,, while the large-scale instability wave scales on D, U,, where U, is the mean 
centreline exit velocity. Decompose the flow variables into an ensemble mean, plus 
a random turbulent field (denoted by ’), plus a large-scale field (denoted by -), so 
that 

u =  u (;) - +u‘ ($%) +ii(;,T), 
and correspondingly for the pressure. Then, perform a time-average of the Navier- 
Stokesequations, over a time T such that T >> L/ U,, D/ U,, subtract the time-averaged 
equations from the full Navier-Stokes equations and perform a second average, this 
time such that L/Uo 4 T 4 D/Uo.  In  the resulting equation, neglect (i) linear viscous 
terms vV2ii, these normally being insignificant in the amplification stage and masked, 
in the present problem, in the decay stage by other effects (cf. $4), (ii) non-linear terms 
ii*Vii, and (iii) linear terms ii’Vu’representing the interaction between the instability 
wave and fine-scale background turbulence (an interaction which might, if required, 
be handled using Crow’s (1968) theory of the viscoelastic response of turbulence to 
large-scale weak fields). Then the equations for ii (for incompressible fluctuations) 
reduce to those for a linear perturbation to a hypothetical flow U(x /L) ,  namely 

\ (t + U P )  ii+ (2 .V) u = -V@, 

divii = 0. J (2.2) 

We can now refer the reader to Crighton & Gaster (1976), Plaschko (1979) and 
Strange (1981) for details of the way in which a multiple-scales expansion (for E << 1 )  
is used to produce, for each real frequency w and mode number m, a solution, to 
leading order, for ii and r?; which is uniformly valid in the axial and radial coordinates 
(x, r )  of a cylindrical polar system (x, r ,  6). It emerges that 

r rx 1 
P(x , r ,6 , t )  = A(x)$,(r,z)exp{iJ a(x)dz-iwt+im6 , 

2 0  i 
and correspondingly for the velocity components (Cz, C r ,  Go) with the replacement of 
$ p  by ($,., $,., $o). Here u(x) is the slowly changing instability wavenumber for the 
local parallel flow a t  station x, for which the eigenvector has components ($,., q4r,  $o, q 4 p )  
governing the transverse distributions of (ax, S,, Go, p ) ,  with x appearing only para- 
metrically. The frequency w and integral azimuthal wavenumber m are prescribed 
real quantities. The amplitude equation (a misnomer, because a and # are complex 
and vary with x) is of the form 

where n(x) and m(x)  are certain functionals of U, obtained from radial integrations 
involving U and its derivatives along with 4, its derivatives, and its adjoint 6. 
Integration of (2.4) yields 

r?; = Ao$p(r,x)exp , 
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and similar expressions for the components of P. These expressions are independent 
of the particular normalization adopted for 4. 

I n  $3, numerical calculations of the quantities 17, ii will be presented for a specific 
choice of mean profile U(r, x ) ,  and compared with experimental data. I n  relation to 
that comparison, two points need to  be made. First, in the experiments we are dealing 
with modes that are phase-locked by coherent exit-plane forcing, and the large-scale 
component of (2.1) can be unambiguously determined by averaging over a period at 
all stations up to, say, x / D  = 6, for which the phase locking is essentially complete. 
Secondly, in the theory the interaction with the jet tailpipe has been completely 
ignored. This interaction has been examined for a plane splitter plate by Orszag & 
Crow (1970) and for the circular pipe by Rienstra (1983), with the general conclusion 
that the interaction becomes insignificant compared with the growing instability 
wave at downstream distances greater than about half an  instability waveiength. For 
the plane-wave modes studied by Crow & Champagne (1971) the preferred mode 
wavelength is 2.380, so that we conclude that the effect of the tailpipe is small for 
x 2 D and accordingly begin our integrations for the axial evolution at x = D .  We 
believe that our analysis is still valid for J: > 0, despite the fact that  the shear-layer 
thickness is not very small compared with 0. The essential requirement is that the 
turbulence be fine-grained on the scale of the instability wavelength, and the latter 
is typically 2 0  while the eddy integral scale is perhaps one-third of the local shear-layer 
thickness. 

3. Numerical results and comparisons with experiment 
For the purpose of numerical calculations, the eigenvalue problem for locally 

parallel flow was formulated in terms of a single dependent variable, the pressure 
fluctuation. At each axial station the eigenvalues were determined by an iterative 
procedure, using a finite-difference method to integrate in the radial direction. Radial 
integrations were performed both outwards, from near the jet axis, and inwards, from 
r = 2 . 5 0 ,  and the resulting pressures and their gradients were matched a t  an 
intermediate radius. I n  this manner the eigenvalues, typically O( l ) ,  were obtained 
to  an accuracy of a t  least four significant figures for a step length of 0.0033R, where 
R = ;to is the jet exit radius, and the full transverse eigensolution structure could 
then be evaluated, locally, at each axial station. Plaschko (private communication 
in relation to his 1979 paper) used a much simpler scheme, involving either outward 
integration from a point near the axis r = 0 and matching to an asymptotic solution 
a t  a large r ,  or the reverse. Such a scheme obviously has difficulties associated with 
the fact that  the asymptotic solution for larger (involving the Bessel function Km(ar)) 
is singular at r = 0, while that for small r ,  involving I m ( a r ) ,  is singular as r + a, and 
as a result Plaschko was unable to determine satisfactorily the large-r behaviour of 
the eigenfunctions, although his determination of the instability wavenumbers a 
appears to have been accurate in so far as he was able to reproduce the downstream 
evolution of an axisymmetric mode precisely as calculated earlier by Crighton and 
Gaster. The finite-difference outward and inward integration scheme used in the 
present study suffers from no such disadvantages; and as a preliminary check we also 
used it, in the axisymmetric case m = 0, to confirm the results of Crighton & Gaster, 
and in the case m = 1 to confirm the results published by Plaschko. 

Axial integrations for (2.5) were started a t  x = l D ,  since for x 5 1D i t  is quite 
unrealistic to model the jet as doubly infinite, particularly a t  the Strouhal numbers 
of interest here where the instability wavelengths are comparable with the jet 
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FIQURE 1 .  Mean-velocity profiles for unexcited jet at axial distances of lD, 2 0 ,  40, 6D;  
0, experiment, jet Mach number 0.3; -, analytical form (3.1). 

diameter D .  Derivatives in the axial direction were evaluated numerically, using a 
step length of 0.050. 

The measurements which appear in the following comparison were obtained as part 
of the model jet experimental programme to be described in Part 2 of this paper and 
much more fully in Strange (1981). In  that programme, plane-wave and higher-order 
modes of acoustic excitation were imposed just upstream of the nozzle exit plane of 
a high-Reynolds-number flow ( lo5 5 Re, 5 lo6). The forcing level was sufficiently high 
that it produced an increase of approximately 6 dB in the far-field broadband noise 
for all modes of excitation, the Strouhal number of the excitation being close to 0.5. 

Before any comparisons are made, attention is drawn to  the importance of the 
mean-flow structure. Michalke (1971), and later Mattingly & Chang (1974), observed 
that the calculated growth of an instability wave (even of long wavelength) on the 
first few diameters of the jet is very sensitive to the mean velocity profile used in 
the calculation and, in particular, that the profile strongly affects the selection of a 
‘prefemed mode’. Indeed, in overlooking this feature Crow & Champagne (1971) 
rejected even the possibility that the development of large-scale structures on a 
circular jet could be modelled by linear spatial instability theory. Subsequently an 
analytical form 

U( r )  = 3 2 { 1 + tanh [ b (: - $I}, 
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FIGURE 2. Radial distribution of filtered velocity fluctuations at x = 1D; (a) axial component; 
(b) radial component. Mode index m = 0. 0, experiment; St = 0.544; -, theory, same St. 

for the mean profile was devised by Michalke (1971) to represent closely, with a 
particular choice of the constant b, the measured profile of Crow & Champagne at 
x = 2 0  (the location where most of their results were taken) and found by him to 
yield phase speeds and amplification rates which compared favourably with their 
observations. On the basis of the similarity rules which apply on the initial region 
(x 5 6 0 )  of a turbulent jet (that velocities are invariant with x while lengthscales 
increase linearly with x), Crighton & Gaster (1976) generalized this form to produce 
a slowly diverging profile 

and it is this profile which is adopted in the present calculations. The choice is well 
justified by the comparison with our own experimental profiles in figure 1, where 
excellent agreement is shown over the first four diameters of the jet. 

We first consider the transverse structure of the eigenfunctions. Radial hot-wire 
traverses were performed a t  axial stations 1, 2 and 4 diameters downstream of the 
nozzle exit plane and both axial and radial filtered velocity components were 
obtained. Figure 2 shows the results at x = 1 D for them = 0 mode. The corresponding 
theoretical results (for incompressible flow and for precisely the same Strouhal 
number) have been normalized so that the amplitude of the axial velocity component 
agrees with experiment on the jet centreline (figure 2a) .  Then the induced radial 
velocity profile, shown in figure 2 ( b ) ,  is obtained without any further normalization. 
I n  the case of the m = 1 (spinning) mode, the predicted radial distribution has been 
normalized, as in figure 3, by matching the radial velocity with experiment on the 
centreline. Repeating these normalization processes a t  s = 2 0  produces the results 
shown in figures 4 and 5 for the m = 0, m = 1 modes respectively. 

The measurements in the last two figures have been taken in a region of the jet 
where the schlieren photographs to be shown in Part  2 of this study (and in Strange 
1981) indicate that the axial growth of the large-scale wavelike structures is strongly 
nonlinear. When the jet is subjected to forcing in the axisymmetric mode, the 
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FIGURE 3. As in figure 2, except that now m = 1. 
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(a) 

rlD rf D 
FIGURE 4. Radial distribution of filtered velocity fluctuations a t  z = 2 0 ;  (a )  axial component; 
( b )  radial component. Mode index m = 0. 0, experiment, St = 0.544; -, theory (renormalized as 
described in text), same St. 

instability wave appears to roll up into a vortex on the shear layer a t  about x = 2 0 ,  
and, in the next diameter or so downstream, vortex-pairing processes can be observed 
(as described e.g. by Moore (1977) and very many others). It therefore comes as a 
somewhat unexpected result that the radial profiles of the axial and radial velocity 
components are so well approximated by linear theory. On the other hand, in the 
m = 1 mode no such vortex interaction processes can be observed, and the flow is 
not so obviously nonlinear, although virtually the same level and angular distribution 
of far-field broadband noise increase is observed in the m = 0 and m = 1 modes 
(Bechert & Pfizenmaier 1977; and Part 2 of this paper). To the authors this indicates 
that an explanation of the broadband amplification is not to be sought in any 
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FIQURE 5.  As in figure 4, except that now m = 1. 

mechanism as specific as that  of axisymmetric ring-vortex pairing (Ffowcs Williams 
& Kempton 1978), but rather in the idea that the large-scale wave produces a strong 
distortion of the mean profile, precipitating the production of vigorous local patches 
of turbulence. This notion would apply to  all large-scale modes provided only that 
their azimuthal wavenumbers were not large. 

We return, in $4, to the good prediction of transverse structure by linear theory. 
The radial distribution of the filtered pressure fluctuation is shown in figure 6, where 

the predictions have been normalized on the peak values in the shear layer (at 
r / R  = 1) .  The experimental results here were taken with the jet running a t  Mach 
number 0.5, a condition a t  which the mean velocity was not measured, but the results 
are encouraging nonetheless, the more so when one recalls again that the calculation 
is for incompressible flow. Observe, however, that  the radial variations in the velocity 
fluctuations exhibit far more structure than is displayed by the variations of pressure. 

Turning to the axial development of the instabilities, it is, despite the reasonable 
prediction of transverse structure by linear theory, unrealistic to expect quantitative 
agreement between linear theory and the observed and apparently nonlinear 
downstream evolution. The gain in the pressure fluctuations in the rn = - 1 mode 
(figure 7 ,  where measurements obtained a t  two different forcing levels are shown) 
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FIGURE 6. Radial distribution of pressure fluctuations at x = 2 0 .  Mode index m = - 1. 0, 
experiment, St = 0.555; -, theory, same St. The pressure fluctuations are not normalized, and 
the figure is intended to show only the shape of the fluctuations. 
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FIGIJRE 7 .  Gain in shear-layer pressure fluctuations a t  r = R.  Mode index m = - 1. 0, experiment, 
St = 0.555, low drive level; 0 ,  experiment, St = 0.555, high drive level; -, theory, same St. Je t  
Mach number for these experimental points is 0.5. 
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FIQURE 8. Gain in shear-layer pressure fluctuations ( r  = R )  at x / D  = 1 : ----, theory; 
St = 0.4; -, theory, St = 0.5. Mode index m = 0, 1 ,  2, as indicated. 

x lD 

FIGURE 9. Gain in shear-layer axial velocity fluctuation ( r  = R )  at x / D  = 1 : -----, theory, 
St = 0.4; -, theory, St = 0.5. Mode index m = 0,1,2, as indicated. 

confirms this expectation. Figure 7 also shows, however, that any simple exponential 
behaviour of the parallel-flow-theory kind would indicate gains far in excess of those 
predicted by the analysis for slowly diverging flow (which does not preclude large 
changes but requires only that - regardless of the wavelength - flow-divergence 
effects should be locally small). Figures 8 and 9, showing the predicted gains in the 
shear-layer pressure and axial velocity fluctuations a t  Strouhal numbers of 0.4 and 
0.5, serve to emphasize this point. It can be observed here that in some cases the 
maximum gain condition cannot be achieved by the computation (depending 
sometimes on the value of m),  while in others the calculation can be followed right 
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FIGURE 10. Phase speed of shear-layer pressure fluctuation ( r  = R) .  Mode index m = -1 .  0, 
experiment, St = 0.555, low drive level; a, experiment, St = 0.555, high drive level; -A-, theory, 
equation (3.2). 

through until the disturbance has almost decayed back to its original amplitude. 
However, in all cases the calculations shown are restricted to values of x / D  for which 
the local profile remains unstable to a spatial instability at the Strouhal number 
considered. So the ‘decay’ is brought about entirely by the n(z)/m(x) term in the 
amplitude equation (2.4) - a term whose presence is excluded by ‘slice’ analyses 
which merely replace parallel-flow solutions 

A,  $ ( r )  exp (ias-iwt) 

Observe also (cf. Crighton & Gaster 1976) that the phase speed 

of any flow variable 11. can also exhibit an 0(1) departure from its parallel flow 
counterpart. Phase measurements taken for the pressure fluctuation in the m = - 1 
mode were used to infer phase speeds for the pressure, and these are presented - in 
gratifying agreement with calculation - in figure 10. Again, such agreement cannot 
be obtained if the local ‘slice’ analysis is used to define the phase speed simply as 
c = w/Rea(x), a definition that would, among other things, imply that the phase 
speed is independent of the radial location and of the flow quantity considered, 
neither of which is true (cf. Crighton & Gaster 1976, and references there to relevant 
experimental work). This point is emphasized, on the theoretical side, by figure 11, 
which gives, for a fixed radial location and Strouhal number, the calculated variation 
of phase speed with x / D  for two different physical quantities and for spinning modes 
with m = 1 , 2  as well as for the axisymmetric mode ; and figure 12 gives the variation 
in phase speed with Strouhal number for the m = 1 mode, as judged from the axial 
velocity fluctuation on the nozzle lip line r = R. 
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FIGURE 12. Axial variation in phase speed for shear-layer axial-velocity fluctuation ( r  = R).  

St = 0.3, 0.4, 0.5, as indicated. Mode index m = 1 .  
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4. Discussion 
A linear instability analysis of plane-wave and higher azimuthal order coherent 

wavelike disturbances on a slowly diverging mean flow has been used to  predict the 
radial distributions, axial growth rates and phase speeds of the flow variables in a 
forced turbulent jet. The theory is limited to axial locations upstream of that at which 
the local parallel flow sustains a neutral wave, and the bounds of validity of the theory 
have been stretched in the comparison with the nonlinear instability wave response 
of the experiments. In the light of this, the measured radial structure of the 
fluctuations is predicted surprisingly well. By simply matching the amplitude of one 
velocity component to the corresponding experimental value a t  a single radial 
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location we find favourable agreement between theory and experiment for the whole 
radial structure of the axial and radial velocities and of the pressure. For the m = 1 
mode, which is not defined by a single scalar stream function, this is a particularly 
demanding test of the theory; and previous comparisons of the theory of $2 in 
Crighton & Gaster (1976) and Plaschko (1979) have not involved any such discussion 
of the transverse eigenfunction structure. 

These remarks lend considerable support to the widely used, but hitherto largely 
unjustified, use of ‘shape assumptions ’ in nonlinear stability theory (Stuart 1963 ; 
KO, Kubota & Lees 1970). Typically, a shape assumption asserts that the transverse 
distributions of velocity and pressure will be calculated from linear parallel-flow 
instability theory at each axial station, and that these distributions will subsequently 
be used in some form of energy equation which will then govern the nonlinear 
streamwise evolution of the disturbance amplitudes. Several applications of this type 
of method to the large-scale orderly jet structure problem have recently been made 
(Chan 1977; Mankbadi & Liu 1981), but there the evidence presented for the shape 
assumption was extremely scant, and restricted in the first to pressure fluctuations 
and in the second to the axial velocity component only. Substantially more evidence 
in its favour than can be presented in this paper is given by Strange (1981). 

The disparity between the linearity of the theory and the nonlinearity of the 
experiment precludes any assessment of the predicted axial growth. Nevertheless, 
a notable feature of the axial behaviour is the decay predicted by the multiple-scale 
analysis. In order to study decaying waves in the parallel-flow situation, i t  is 
necessary to bring in viscous forces, or equivalently, in the high-Reynolds-number 
limit, to deform the path for the radial integration of the inviscid equations into a 
complex plane and below the complex critical point, in the manner described, for 
example, by Gotoh (1968). An alternative method for proceeding axially beyond the 
location of maximum gain appears from the present work to be provided by 
introducing non-parallel effects, and in the present jet problem we suggest that this 
alternative is much more appropriate. We observe that the possibility, mentioned 
earlier as suggested by the work of Batchelor & Gill (1962), of continued growth of 
a spiral mode on the far-downstream jet, cannot be realized unless there is some direct 
excitation of the jet in that region. It appears that non-parallel effects will cause a 
freely developing disturbance there to decay, even though the analysis of Batchelor 
& Gill predicts the profile to remain locally unstable to a spinning mode with m = 1. 
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